
Abstract. One of the most important steps in a Kohn-
Sham (KS) type density functional theory calculation is
the construction of the matrix of the KS operator (the
``Fock'' matrix). It is desirable to develop an algorithm
for this step that scales linearly with system size. We
discuss attempts to achieve linear scaling for the
calculation of the matrix elements of the exchange-
correlation and Coulomb potentials within a particular
implementation (the Amsterdam density functional,
ADF, code) of the KS method. In the ADF scheme
the matrix elements are completely determined by 3D
numerical integration, the value of the potentials in each
grid point being determined with the help of an auxiliary
function representation of the electronic density. Nearly
linear scaling for building the total Fock matrix is
demonstrated for systems of intermediate size (in the
order of 1000 atoms). For larger systems further
development is desirable for the treatment of the
Coulomb potential.
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1 Introduction

There is currently much interest in the development of
O(N) methods (linear scaling of computation time with
system size) for both Hartree-Fock (HF) and Kohn-
Sham (KS) calculations. In contrast to most other
current schemes for KS calculations, the Amsterdam
density functional code [1] (ADF) uses 3D numerical
integration for the evaluation of the ``Fock'' matrix
elements throughout (in spite of some historical and
logical inconsistency, we denote the matrix of the KS
one-electron operator simply as Fock matrix). The use
of 3D numerical integration also for the elements of the

electronic Coulomb potential is particular to the ADF
code. It is the purpose of this contribution to discuss the
way in which linear scaling can be achieved in setting up
the Fock matrix in this method. In this introduction we
will ®rst brie¯y consider the scaling of various steps in
the ADF method and compare this with alternative
density functional theory (DFT) methods. In order to
achieve linear scaling we need to de®ne a ®nite spatial
region over which a basis function can be considered to
be nonzero. A de®nition of the spatial cut-o� for the
basis functions that takes into account the e�ect of the
cut-o� on the matrix elements to be constructed will
be discussed in Sect. 2. Section 3 treats the linearization
of the density ®tting, Sect. 4 the linearization of the
evaluation of the exchange-correlation and Coulomb
potentials in the grid points, Sect. 5 the building of the
Fock matrix and Sects. 6 and 7 o�er results and
conclusions respectively.

The matrix elements of the exchange-correlation
(XC) potential and the Coulomb potential are both
evaluated by numerical integration, using P integration
points

Glm � hvljV̂xc � V̂Couljvmi �
XP

k�1
v�l�rk��Vxc�rk�

� VCoul�rk��vm�rk�wk �1:1�
Using 3D numerical integration in this way has the

advantage that it is possible to use almost any type of
basis function, although there may be some restrictions
arising from the required evaluation of VCoul�rk� at the
grid points (the Poisson solver may or may not use the
basis functions). STOs have been chosen as a convenient
and physically well-motivated basis. Apart from en-
abling the one-electron wavefunctions and the total
density to have the correct behaviour in the tail and at
the nucleus, they are also e�cient since their number can
typically be a factor of 3 lower than the number of
Gaussians. Another choice that has been made is nu-
merical atomic orbitals (NAOs, also called single-site
orbitals, SSOs) [2±6] With N basis functions, there is an
NP step in the calculation for the evaluation of the basisCorrespondence to: E.J. Baerends
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functions at all points, assuming for the time being that
no cut-o�s are applied. The value of the XC potential at
each point simply follows, with the current approximate
functionals, from the density and its gradient at that
point. The density can be calculated either through the
density matrix, yielding an N2P step, or in terms of the
occupied orbitals, yielding an NeNP step [7]. Here Ne is
the number of electrons. Of course not every size pa-
rameter is equal, in particular for large molecules one
usually has

P�N 0 > N > Ne �1:2�
where N¢ is the number of auxiliary functions to be
discussed below. However, each of these parameters
scales linearly with system size, so the sum of their
exponents can be used roughly as the scaling order and
the density evaluation appears to be an O(N3) step.
In fact, a set of atom-centred auxiliary functions
(density ®tting basis) was introduced [1], which allowed
the density to be written as a linear expansion in N¢
functions,

q�r� ! ~q�r� �
X

A

X
i2A

aifi�r� �1:3�

making evaluation of the density and of Vxc an N¢P, i.e.
an O(N2) step. The determination of the ®t coe�cients ai
was also implemented as an O(N2) step (for more about
the ®tting procedure, see Sect. 3). The Coulomb poten-
tial at each point is calculated from the functions f c,
obtained as Coulomb integrals from the ®t functions f,

f c
i �rk� �

Z
fi�r�
jrÿ rkj dr

VCoul�rk� ! ~V �rk� �
Z

~q�r�
jrÿ rkj dr

�
X

A

X
i2A

aif c
i �rk� �1:4�

This makes the evaluation of the Coulomb potential at
the grid points also an N¢P [O(N2)] step, though with a
much larger prefactor than the density and Vxc evalu-
ation. Finally, setting up the G matrix according to Eq.
(1.1), when the values of the potentials at all points are
available, as well as the values of the basis functions at
all points, is an N2P step, i.e. O(N3), as is the subsequent
diagonalization. The scalings of the computation steps in
the original ADF implementation [1] are summarized
below:

For many systems, in particular systems incorporating
transition metal atoms (transition-metal complexes or
clusters with a limited number of metal atoms) which
were the prime application targets, the dominant steps
were the ®t coe�cient determination and the Fock
matrix set-up, so the scaling was typically between N2

and N3. This constituted a signi®cant improvement over
the then N4 scaling of ab initio HF calculations.

Before discussing how the various steps in the cal-
culations can be scaled down to O(N) by appropriate
cut-o� procedures, we comment brie¯y on the di�erence
between the ADF scheme and the now widespread use of
auxiliary functions in Gaussian-based DFT codes.
Sambe and Felton [8] adopted the density ®tting proce-
dure of ADF in order to scale down the computation
of the Coulomb operator matrix elements, but tried
to avoid 3D numerical integration as much as possi-
ble (which, however, is not completely possible). They
noted that the density ®tting could also be used to scale
down the calculation of the matrix elements of the
Coulomb operator Ĵ � VCoul�r� from O(N4) to O(N3)
when using analytical integral evaluation for the 1/r12
integrals:

Jlm � hvljVCouljvmi �
X

i

ai

Z
vl�r1�vm�r1�

1

r12
fi�r2� dr1 dr2

�1:5�
This, of course, is not tied in any way to DFT, but is

applicable in HF calculations as well. The requirement
of e�cient analytical integral evaluation implied, how-
ever, that STOs had to be abandoned and Gaussian
basis sets had to be used instead. This approach is rather
e�cient if the Coulomb operator alone is considered: the
N2N¢ process of Sambe and Felton, which does not have
a high prefactor since the Coulomb integrals of Eq. (1.5)
are easy with Gaussian functions, compares favourably
to the N¢P+N2P process of ADF (N¢P for the potential
evaluation on the grid; N2P for the matrix set-up), since
P is typically high. However, since the matrix elements
of the exchange-correlation potential are already evalu-
ated by numerical integration (not by Sambe and Felton,
but in many DFT codes today), the added cost of in-
cluding the Coulomb potential in Eq. (1.1) is only the
N¢P evaluation of VCoul�rk� on the grid. This is never-
theless an important part of the calculation, since the
prefactor is relatively high (the evaluation of f c(rk) is
expensive). It is also di�cult to scale down to O(N) due
to the long-range nature of the Coulomb potential. The
use of auxiliary function sets for the Coulomb problem,
sometimes denoted the RI-J technique, is currently
receiving renewed interest, cf. Kendall and FruÈ chtland
[9] and Eichkorn et al. [10].

In this paper we will address the reduction of the var-
ious steps in the Fock-matrix set-up to linear scaling. It is
to be noted that a variety of methods are currently being
explored to achieve linear scaling for the matrix elements
of the Coulomb potential [11±24]. There are other steps in
the calculation which we do not discuss in this paper but
which have already received considerable attention else-
where, such as the scaling of the point generation itself [25]
and, of course, the diagonalization [26±35].

2 De®nition of cut-o�s for matrix elements

For each function it is natural to de®ne a radius outside
which it is negligible, and to determine the cut-o� radius
of each atom as the maximum of the radii of its

Fit coe�. Potentials in Functions in Fock matrix Diagonal-
determi-
nation

grid points grid points set-up ization

O(N2) aN¢P+bN¢P NP N2P O(N3)
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functions. In the literature [7, 25] the function radius kl
has usually been determined from the function values by
the condition jvl�r�j < s for jrj > kl. This condition
does not take into account the fact that cutting at a given
function value is not quite the same for weakly decaying
functions (small exponent) as for sharply decaying
functions. A (much) larger contribution to, for instance,
the normalization integral would be neglected in this
way for a (very) weakly decaying function. In order to
have approximately the same relative error in matrix
elements of both di�use and contracted functions we
determine the function radius according to a somewhat
di�erent algorithm, without of course any change in the
underlying idea.

The relative weight of the radial part of a basis or ®t
function beyond a certain cut-o� radius r0 is calculated as
the ratio between the integral of the tail of the function
beyond the cut-o� point r0 and the total radial integral,

w�v; r0� �
R1
r0

r2v�r� drR1
0 r2v�r� dr

�
R1
0 rn�1eÿar dr
�n� 1�!=an�2 �2:1�

Here n is the main quantum number, i.e. the radial part
of v is rnÿ1eÿar. Since we wish to have a very e�cient
algorithm, in view of the frequent tests on these weights,
we avoid the time-consuming integration over the partial
region �r0;1� in the numerator by using a simple
exponential function to approximate the tail of the
function r2v,

g�r� � Ceÿbr �2:2�
The parameters b and C are determined by

g�r0� � r20v�r0� and g0�r0� � d
dr

r2vjr�r0 �2:3�
At large cut-o� points the function g simulates the tail of
r2v almost perfectly. Equations (1.1) and (1.3) lead to the
following expression for the relative weight of the tail

w�v; r0� � an�2rn�1
0 eÿar0

�n� 1�!�aÿ �n� 1�=r0� �2:4�

If we had used the normalization integral rather than the
direct radial integral over (the radial part of) the function
in Eq. (2.1), approximately the square of the present
expression would have resulted (apart from a factor of
the order of magnitude 1) for the contribution of the
region beyond r � r0 to the normalization integral.
Therefore the typical choice for the weight of 0.1%
(w � 10)3) implies neglecting a contribution 10)6 to the
normalization integral. The weight of the neglected tails,
from which the cut-o� radii r0 (denoted kl) are deter-
mined, is of course chosen depending on the desired
maximum ``cut-o� error''. The latter has to be in keeping
with the precision of the numerical integration. An
atomic radius can be determined as kA � max

l2A
�kl�. All

matrix elements of a pair AB can be excluded if
RAB > kA � kB. For a given atom A we have a neigh-
bourhood of atoms B which are such (radius kB larger
than RAB ÿ kA) that the pairs AB have to be treated. This
will always be a small number and for large molecules
will not increase with system size. Parts of the code with

an outer and inner loop over the atoms [O(N2)] transform
into a single loop over the atoms with, for each atom, a
small inner loop over the neighbouring atoms [O(N)]. As
an additional re®nement, for an atom pair AB that has to
be considered, the function pairs may be checked and
excluded if RAB > kl � km. This will not change the O(N)
scaling but will improve the prefactor.

For matrix elements that have to be evaluated ac-
cording to the chosen criterion one can still restrict the
number of sample points in the numerical integration by
using essentially the same criterion to neglect distant
points (see Sect. 4).

3 Linearization of the density ®tting

The linearization of the density ®tting is trivial once an
important point is recognized concerning the implemen-
tation of the density ®tting in the ADF program. To
make this clear we brie¯y review the density ®tting as
introduced in [1].

The ®t coe�cients for a density q�r�; q�r� !
~q�r� �P aif �r� are determined from a least-squares ®t-
ting procedure, minimizing the deviation D between true
and ®tted density subject to the condition that charge is
conserved

D �
Z
�qÿ ~q�2 ds;

Z
~q ds �

Z
q ds � N �3:1�

Introducing the Lagrangian multiplier 2k one obtains
the equation

Sa � t� kn �3:2�
where a is a column vector with the ®t coe�cients, S

is the matrix of ®t function overlap integrals, n is a
column with the integrals ni �

R
fi dr and t is a column

vector collecting the overlaps ti �
R

q�r�fi�r� dr. Solving
for the Lagrange multiplier gives explicitly

a � Sÿ1t� kSÿ1n

� Sÿ1t� N ÿ nySÿ1t
nySÿ1n

Sÿ1n �3:3�

Dunlap et al. [36] have changed the deviation to be
minimized from the least-squares deviation in the
density to the least-squares deviation in the Coulomb
self repulsion of qÿ ~q. This allows the electronic
Coulomb energy, evaluated from the ®tted density, to
approach the true Coulomb energy from above (``vari-
ational ®tting for the Coulomb term in the energy'').

Carrying out the ®tting process as outlined here for
the whole density at once will be an O�N 03� process in
view of the linear system of Eq. (3.2). Considering pos-
sibilities to make the ®tting scale more favourable, we
®rst note that apart from the charge conservation con-
dition showing up in the second (Lagrange multiplier)
term of the equation for a, the determination of the ®t
coe�cients is a linear process in the ®tted object, the
density q�r�: it is possible to write q as a sum of parts
�q �Pi q

i say) and determine the coe�cients as the sum
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of the coe�cients arising from ®tting the parts sepa-
rately, provided all functions are used for each qi term.

It is natural to express the charge density q�r� as the
sum of one- and two-centre charge distributions qAB:

q �
X
l;m

Plmvlvm �
X
A�B

X
l2A

X
m2B

Plmvlvm �
X
A�B

qAB �3:4�

The use of all ®t functions for the ®t of each qAB term
implies that apart from functions at A and B, also
functions at neighbouring centres, C say, would have to
be used. The ADF implementation [1], however, carries
out the ®tting for pair densities qAB separately and
restricts the ®tting of qAB to ®t functions on A and B
only, making the ®tting an O�N 2� process. This policy
does not seem to have been followed by either Sambe
and Felton [8] or Dunlap et al. [36] or any of the more
recent implementations of the use of auxiliary functions,
except for the recent work of Gallant and St-Amant [37],
who also partition the total density into a sum of
subsystem densities. We brie¯y review the arguments in
favour of atomic pair ®tting:

1. The process becomes O�N 2�. Moreover, the ®tting
of each pair density qAB with functions on A and B only
implies that the dimension of each linear system, Eq.
(3.3) remains modest and is independent of system size.

2. The possible bene®t in ®tting qAB that could be
derived from functions on other atoms is heavily system
dependent. Since the presence of atoms C close to qAB is
accidental, the quality of the ®t could vary from one
system to another depending on the accidental sur-
rounding of a pair AB by other atoms. A reliable ®t
basis will have to be able to ®t a density qAB accurately,
with approximately the same precision, under all cir-
cumstances, also in cases where other atoms are remote
or not present at all, for instance in the diatomic mol-
ecule AB.

3. It is not possible to take the accidental presence of
atoms C into account when systematically developing
sets of ®t functions. For ®t functions on A this is pos-
sible to a certain extent for directly bonded atoms B,
since the variation in the number and type of chemical
bonds formed by an atom A is limited (nearest neigh-
bour distances for instance fall in a certain range). Fit
function sets for an atom A can therefore be generated
that can cope with the presence of any ``normal'' two-
centre bond with an atom B. The presence of ``third
parties'' C is not certain and can therefore not be ex-
ploited in a generation scheme. It is possible that the ®t
sets generated for reliable pair ®ts are actually larger
than would be necessary in some particular case ± the
ADF ®t sets are indeed relatively large ± but this is not
a problem since the linear system, Eq. (3.3), always
remains small.

4. The pair ®tting scheme can be trivially scaled down
to O(N) (see below).

Given a pair-wise ®tting scheme, linear scaling can
simply be achieved by including only atom pairs for
which the sum of the radii, determined as described in
Sect. 2, is larger than the distance between the atoms.
Furthermore, a smaller prefactor can be obtained by
eliminating the pairs of basis functions for which the

sum of the radii is smaller than the distance between
their atoms. We note that the pair-wise ®tting has also
proven valuable during the parallelization of the ADF
program. As long as the number of nodes is smaller than
the number of atom pairs, distribution of the one- and
two-centre densities over the nodes of a parallel
machine, with proper account of their computational
``weights'' to achieve load balancing, yields a perfectly
scaling parallel implementation [38]. In the present case
of course, only the pairs that are not excluded are to be
distributed.

4 Linearization of manipulations involving grid
points: Coulomb and XC potential evaluation

The calculation of the XC potential will already be linear
when we apply cut-o�s to the evaluation of the values of
®t functions at the grid points (and derivatives) to obtain
the density and XC potential. Since it is the value of a ®t
function at the grid point that enters the density
evaluation, cut-o�s can be based on a threshold for the
function value: fi�r� is considered negligible outside a
radius r0 at which the radial part of fi is equal to a given
small threshold, fi�r0�=Zlm�r̂0� � s (Zlm is a real spherical
harmonic). We use the weight criterion, Eq. (1.4), since
the density is actually used for the XC potential, which
enters the spatial integrals making up the Fock matrix
elements. The XC potential evaluation is much cheaper
than the evaluation of the Coulomb potential, but in our
scheme the calculation of the two potentials is closely
related. For the distance cut-o�s in the Coulomb
potential we will follow the same strategy as implement-
ed in the ADF-BAND code for in®nite periodic systems
[5]. The Coulomb potential in a certain integration point
can be written as a sum over the atoms:

VC�rk� �
X

A

V A
C �rk� with V A

C �rk�

�
X
i2A

ai

Z
fi�r0�
jrk ÿ r0j dr0 �4:1�

Applying the expansion of jrÿ r0j in spherical harmonics
and using the exponential form of the STO ®t functions
gives us the following spherical harmonics expansion for
the Coulomb potential from each atom:

V A
C �rk� �

X
l

Xm�l

m�ÿl

4p
2l� 1

Zlm�R̂kA�IA
lm�RkA�

IA
lm�RkA� �

X
i2A

d�l; li�d�m;mi�aiI�ni; li; ai; RkA� �4:2�

Here RkA is the distance vector from nucleus A to the
point rk, and IA

lm is the radial part of the (lm) term in the
spherical harmonics expansion. The function I is ob-
tained from incomplete Gamma functions. Going back
to the algorithms used to evaluate incomplete Gamma
functions, it is apparent that this function can be written
as the sum of a multipolar and an exponentially decay-
ing part:

394



I�ni; li; ai; RkA� � 1

�RkA�li�1
�ni � li � 1�!
�ai�ni�li�2

� eÿaiRkA J�ni; li; ai; RkA�
�4:3�

The function J consists of a power series in RkA, with ni
as highest power. This is just one factor RkA more than
in the value of the STO ®t function itself, which of
course has a simple rniÿ1eÿair radial behaviour. For the
sake of clarity one cut-o� radius for both the exponen-
tial part of the Coulomb potential and the function value
for the density evaluation is used, where the rnieÿair

radial behaviour of the former is to be taken into
account when determining the cut-o� threshold.

The multipolar part of the Coulomb potential is long-
range, which hampers achieving linear scaling. It is ad-
vantageous to ®rst compute the ``strength'' MA

lm of an
atomic multipolar term of nucleus A as

MA
lm �

X
i2A

d�l; li�d�m;mi�ai
�ni � l� 1�!
�ai�ni�l�2 �4:4�

so that the multipolar term becomes

Qlm�RkA� � MA
lm

�RkA�l�1
�4:5�

The multipolar strength can be calculated once for all
atoms (at a certain SCF cycle), and then the possibility
to neglect higher-order multipoles can, for a particular
block of grid points, be based on the strength MA

lm as well
as the distances RkA. For the size of systems we have
been considering, it has never been possible to neglect
also the l � 0 terms, not even from the most distant
atoms, so there has always remained an O(N2) term in
the Coulomb potential evaluation. It has been possible
to neglect higher multipole terms, in particular above
l � 1. We will investigate below to what extent the
O(N2) scaling of the l � 0 potential terms, which only
require a small fraction of the total time in the
calculations without cut-o�s, a�ects the overall scaling
in the systems considered (of the order of a several
hundreds of atoms). Obviously, the structure of the
whole scheme is suitable for fast multipole techniques
[11±13, 23], as are now being applied in Gaussian-based
codes [5, 11±15, 17]. Nevertheless, it appears that such
techniques would only pay o�, and are actually only
needed in the present scheme, when the size of systems
becomes one order of magnitude larger.

5 Linearization of manipulations involving grid
points: function evaluation and Fock matrix set-up

PeÂ rez-JordaÂ and Yang [7] have developed an O(N)
method for the evaluation of the density at the grid
points, and of matrices such as the overlap matrix, based
on the construction of the sets S(rk) of basis functions
that have nonnegligible values at a given grid point rk
(we ignore here the partition function pa that also plays a
role in the development of [7]):

S�rk� : vl vl�rk�j > s
� 	 �5:1�

They determine the set of relevant basis functions for
each grid point with an e�cient tree algorithm. How-
ever, ADF uses (as do most DFT implementations, see
TURBOMOLE [39] and GAUSSIAN 94 [40]) blocks of
points for e�ciency reasons, so that vectorization in
inner loops over grid points can be used. Moreover, as
explained in Sect. 2, we do not base the cut-o� decisions
on a radius for each basis function that is determined by
a ®xed threshold for the function value. We wish to base
the cut-o� decisions on an estimate of the percentage of
the matrix elements that will be neglected. Therefore the
set of functions that has to be taken into account for a
given block of points B is based on whether or not all the
points of the block are located in the region of space
beyond the radius r0, which according to Sect. 2
contributes less than a given percentage [w of Eq. (2.4)]
to the radial integral over the whole space. We de®ne the
tail function T(vl; rk) for function vl with respect to a
point rk as the weight in the sense of Sect. 2 of the radial
integral of vl beyond a radius which is the distance from
the centre of the function to the point rk, or

T �vA
l ; rk� � w�vl; jrk ÿ RAj� �5:2�

In case a block of points B is speci®ed (T(vl; B)), the
radius is to be taken as the distance from the centre of
the function to the nearest point of the block. The use of
the tail function allows a more even-handed treatment of
di�use and contracted functions than the uniform
cutting of basis functions at a given value. We now
de®ne the set of functions S(B) that belongs to a block of
points B as follows:

vl (on atom A) belongs to S(B) if there exists a vm (on
atom C) such that both the following conditions are
satis®ed:

a)RAC < kl � km; b) T �vl; B� � T �vm; B� > threshold

�5:3�
Atoms A and C are chosen from the set of atoms that
possess functions with a tail T(vl; B) over the block
larger than a given threshold. The condition represented
in Eq. (5.3a) then means that the function vl is
su�ciently close to some other function vm to have a
non-negligible matrix element with it. The second
condition checks if the contribution of the block B to
the numerical integration that makes up the lm matrix
element would indeed be non-negligible.

Stratman et al. [25] have pointed out that the points
in the block should be localized in space in order to limit
the set of relevant basis functions. As a matter of fact,
the Voronoy polyhedron scheme of point generation in
ADF already generates points in spatial cells (small
spheres around an atom, or wedges of the atom's Vor-
onoy cell) [41, 42].

As pointed out in [7, 25] the creation of the sets S(B)
of basis (and ®t) functions belonging to block B with just
the condition expressed in Eq. (5.1) is an O(N2) step, the
number of checks required being in principle (number of
points) ´ (number of functions). In our case, where pair
tests are being done for each block, cf. Eq. (5.3), it is in
principle an O(N3) step. However, with present target
sizes of molecules of up to 1000 atoms, it is still very
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cheap. It is organized e�ciently in a tree structure by
®rst, for a given block of points, excluding (most) atoms
on account of their distance from the block, and con-
sidering only pairs lm belonging to the (small) set of
atoms ``belonging'' to the block.

Once the sets of functions S(B) belonging to the
blocks B have been determined, the calculation of the
function values is evidently O(N). The calculation of
matrices of operators like the identity (overlap matrix)
or VN(r), VCoul(r), Vxc(r) is now also automatically lin-
ear, if the values of the potentials in the points are
known (see previous section), since for each block of
points B a limited number of basis functions has to be
processed, which is independent of system size. Let us
denote the total operator value by W(r) (operators like
the kinetic energy T̂ �Piÿ 1

2r2�i� can be treated in a
completely analogous way), then for the matrix of the
operator X̂, and also for the density, if it is calculated
from the density matrix, we have the following double
loop over the basis functions:

fConstruct contribution of block B to matrix elements;

construct values of density in points of Bg
For l 2 S�B�
for all rk 2 B : nl�rk� � X�rk�vl�rk�

For m 2 S�B�
if RAC < kl � km then

if T �vl; B� � T �vm; B� > threshold then

fadd contribution of B to Xlmg
Xlm � Xlm �

X
rk2B

vm�rk� � nl�rk� �operator matrix�

fcalculate density in points of Bg
for all rk 2 B : q�rk� � q�rk� � Plmvl�rk�vm�rk� �density�

End m

End l

We have included here the density evaluation from the
density matrix to show that it follows essentially the same
route, although in our implementation the density is
directly evaluated from the ®t functions during the self-
consistent ®eld (SCF). Note that the use of the tail
function T �vl; B� does not change the scaling, which
would also become linear if only tests on a cut-o� radius
were performed. However, it allows an additional re®ne-
ment by which the contracted or di�use nature of basis
functions, which is important for the contribution of
block B to the matrix elements, is properly accounted for.

6 Results and discussion

This section contains an overview of the e�ect of the
implementation of cut-o�s in various stages of the
calculation of the (electronic potentials part of the) Fock
matrix, including graphs with timings for the separate
routines of the original code of ADF and the adapted

code including the cut-o�s. As a test case we chose
alkanes with the following geometry: the carbon atoms
lie in one plane and form a fully extended zig-zag chain;
the hydrogen atoms are below and above the plane. As a
second test case we took hypothetical two-dimensional
systems, namely hexagonal graphitic sheets, which are
terminated by nitrogens. Figure 1 shows the largest one.
The ®tting of our timing curves to a power function is
done with the Levenberg-Marquardt algorithm [43]. For
the investigation of the computational e�ciency in a
three-dimensional system we have chosen the
Pt(P(Ph)3)3CO complex.

6.1 Density ®t

Figures 2 and 3 display the scaling behaviour of the two
routines involved in the ®tting of the density. Prior to the
SCF cycles for each pair of atoms the ®rst routine
(FITINT) calculates the elements of the matrices S and
n, and the individual integrals tlm;i � hvA

lvB
m f A orB

i i, which
are contracted on each cycle with the density matrix
elements Plm to generate the t vector [cf. Eqs. (3.2) and
(3.3)], and writes these integrals to ®le (timing in Fig. 2).
On every SCF cycle the second routine (RHOFIH) reads
the matrix elements from ®le and performs the ®tting of
the present density by solving Eq. (3.3) for each pair of
atoms (timing in Fig. 3). Both ®gures show the scaling
with and without the application of cut-o�s to the basis
functions. The use of cut-o�s implies that we are only
®tting atom-pair densities of ``neighbouring'' atoms. The
calculation of the ®t integrals, which is dominated by the
integrals tlm;i � hvA

lvB
m f A orB

i i, meets our expectations in
that Fig. 2 shows a decrease of an almost quadratic
scaling to an almost linear scaling. The small deviations
from quadratic and linear scaling respectively are due to

Fig. 1. The largest planar aromatic system used for the timing
results
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special circumstances. The scaling lower than 2.0 in the
old code arises from atom pairs with large distance being
cheaper with the current integral routines. The small
deviation from linear scaling of the calculation with cut-
o�s may be due to I/O e�ects perturbing the timing,
since we could determine this to be also the origin of the
scaling of the routine RHOFIH (Fig. 3) not being as
predicted. The scaling of RHOFIH without cut-o�s , Eq.
(2.4), as well as with cut-o�s, Eq. (1.6), is higher than
predicted. Analysis of this routine showed that the
discrepancy between the actual scaling and the predicted
one is caused by an I/O bottleneck. The routine is not
computationally intensive but spends the largest part of
its time in I/O manipulations, viz. the reading of the ®t
integrals (compare the absolute times in Figs. 2 and 3).
For the smaller molecules the ®le with the ®t integrals
will ®t into memory; however, for the larger molecules

this becomes impossible, as the size of this ®le scales
linearly with the number of atoms. At certain molecular
sizes this causes a tremendous growth of paging which
perturbs the timings. The same will happen in the
FITINT routine (Fig. 2) and may become visible for the
smaller computation time in the calculation with cut-
o�s.

6.2 The Coulomb potential

In Fig. 4 the scaling of the calculation of the Coulomb
and the XC potential is shown with and without cut-
o�s. The reduction in the scaling power is rather small,
although even this implies a reduction in computation
time by a factor of 10 for the 600-atom system. We
examine these timings more closely to understand the

Fig. 2. The scaling behaviour
of the routine (FITINT) that
calculates and writes the ®t
integrals to ®le, with and with-
out the use of cut-o�s, for a
series of alkane chains with the
indicated total numbers of
atoms

Fig. 3. For the alkane chains,
the scaling behaviour of the
routine (RHOFIH) that reads
the ®t integrals from ®le and
solves the least-squares equa-
tion for the ®t coe�cients
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small decrease in the scaling power. In Fig. 5 the
di�erent components of the calculation of the Coulomb
and XC potential are presented. First, the density in the
grid points q (rk) is evaluated as written in Eq. (1.3).
Due to the cut-o�s for each grid point only ®t functions
in its neighbourhood are used. This results in a perfectly
linear scaling of this step. The evaluation of the XC
potential is also linear, because it only manipulates the
density in the grid points. With V sr

Coulomb we denote
the calculation of the short-range (exponential) part of
the Coulomb potential, Eq. (4.3). For this component
of the Coulomb potential the same cut-o� radii are
applied as for the density. Therefore this component of
the potential also scales linearly. For the evaluation
of the multipolar parts QA

lm�RkA� � MA
lm=�RkA�l�1 of the

Coulomb potential, 1/RkA has to be calculated for each
grid point rk with respect to all atoms in the system.

A few computational operations are needed to deter-
mine 1/RkA: ®rst, (RkA)

2 from x2kA � y2kA � z2kA, then RkA

from
������������
�R2

kA�
q

and ®nally 1/RkA. We show explicitly just

how much time the simple evaluation of the 1/RkA

values takes by adding the computation time to that of
VXC and V sr

Coulom. This step of course scales quadratic-
ally, and since it takes an amount of time that is
comparable to the previous steps, its addition changes
the scaling from linear to about 1.5 for systems up to
approximately 1000 atoms. The relatively large compu-
tation time of this simple step can be attributed to the
evaluation of the square root being extremely expensive.
The last curve shows the scaling for the complete
evaluation of the Coulomb and the XC potential.
Comparing the last two curves we see that once the
1/RkA values are known, only little time is needed to

Fig. 4. For the alkane chains,
the scaling behaviour of the
routine that calculates the
Coulomb and the XC potential
in the grid points

Fig. 5. Timing and scaling be-
haviour for the various steps in
the calculation of the Coulomb
and the XC potentials in the
grid points when cut-o�s are
used (alkane chains). V sr

Coulomb
is the short range (exponential)
part of the Coulomb potential;
Vlr
Coul is the long range (multi-

polar) part
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evaluate the full multipolar contributions of Eq. (4.5).
Since the evaluation of the long-range part of the
Coulomb potential is a quadratically scaling step in our
present implementation, its computation time would
ultimately start to dominate. For the size of systems we
are interested in, the evaluation of the long-range part,
although algorithmically very simple, takes an amount
of time that is comparable to (even somewhat larger
than) the sum of the exchange-correlation potential and
the short-range part of the Coulomb potential. Since
several of the other computation steps can be scaled
down very successfully (see the comparison for total
timings below), the computation time for the long-range
Coulomb potential changes from a modest fraction of
the time without cut-o�s to a signi®cant fraction after
application of cut-o�s. The computational expense is

still acceptable, but it is one of the prime targets for
future e�orts towards computational speed-up.

6.3 The Fock matrix

Besides the potential in the integration points we need
the values of the basis functions in the integration points
to set up the Fock matrix. Figure 6 shows the two
curves, with and without cut-o�s, for the evaluation of
v(rk). The original code of the routine scales quadratic-
ally due to the loop over the functions and the loop over
the integration points. The adapted code scales perfectly
linearly as expected.

Having all ingredients available (function and po-
tential values in the grid points) the ®nal set-up of the
Fock matrix is shown in Fig. 7. A double loop over the

Fig. 6. The scaling behaviour
(alkane chains) of the routine
that calculates the values of the
basis functions in the grid
points, with and without the
use of cut-o�s

Fig. 7. The scaling behaviour
(alkane chains) for the ®nal set-
up of the Fock matrix, when
potentials and basis function
values are known, with and
without the use of cut-o�s
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atoms and a loop over the integration points in the
original code give a cubic scaling. The adapted code
shows exactly linear scaling with system size. Dramatic
improvement of the computational e�ciency results.

6.4 Aromatic systems

The applicability of our method to two-dimensional
systems is demonstrated with the results of the aromatic
systems. We do not show the individual routines but the
timing is shown for the sum of the two routines involved
in the density ®t (Fig. 8) and the calculation of the total
Fock matrix (Fig. 9), including the calculation of
function values, of the potentials, and of the matrix
elements of the Fock matrix with both the kinetic energy
and the electronic potentials as operators. In Fig. 8 the
scaling behaviour with cut-o�s is dominated by the

evaluation of the ®t integrals. The aromatic systems are
not yet large enough to enter the size range where the
cut-o�s cause the number of pairs to be handled to
increase linearly (note that in one dimension even the
largest aromatic system has the size of only a C35 alkane
chain). The number of pairs still increases like Eq. (1.3),
explaining the observed scaling. The poorer scaling of
RHOFIH, Eq. (1.7), is not visible due to the computa-
tion time being more than an order of magnitude less
than that of FITINT. In Fig. 9 the scaling achieved in
the calculation of the Fock matrix with cut-o�s applied
is an average over the various components of the
calculation. The quadratic scaling of the long-range
Coulomb part ± still relatively cheap at this system size ±
is not yet important, the 1.3 scaling has its origin in the
increase of the number of pairs, as in the case of the ®t
integrals.

Fig. 8. The combined scaling
behaviour in the planar aro-
matic systems of the two rou-
tines (FITINT and RHOFIH)
that are involved in the ®tting
of the density, with and without
the use of cut-o�s (one call of
each routine)

Fig. 9. The combined scaling
behaviour of all routines that
are used to set-up the Fock
matrix: the calculation of the
Coulomb and the XC potential
in the grid points, the evalua-
tion of the basis functions in the
grid points, the initialization of
the Fock matrix with the ki-
netic energy part, and the ®nal
set-up of the Fock matrix. The
timings are shown with and
without the use of cut-o�s
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6.5 Relative error

Our objective throughout this project has been to
improve the scaling with system size, while retaining
su�cient precision in the results. It is natural to gauge
the required precision against the precision to which the
numerical integration is typically set. A key quantity is
the bond energy, i.e. the energy of the molecule minus
the sum of the energies of the atoms. With increasing
system size, the relative error in this quantity is required
to stay constant (approximately), implying a constant
absolute error in the bonding energy per bond, which of
course also stays roughly constant irrespective of system
size. The numerical integration has the required property
of yielding a constant relative error independent of
system size; its magnitude being determined of course by
the setting of the accuracy parameter for the numerical
integration. The cut-o� parameters should be set in such
a way that if the numerical integration a�ords a bonding
energy with a relative error of only 0.1% say, the
calculation done with the cut-o� radii should also return
bonding energies with a relative error not larger than
0.1%.

The setting of the cut-o� parameters has been tested
for the following molecules as test cases: C50H102,
C100H202 and Pt(P(Ph)3)3CO. Each cut-o� parameter
was investigated separately to prevent spurious results
from accidental cancellation of errors and also with a
high numerical precision (relative error less than 10)4%)
to avoid numerical noise. Our goal has been to obtain a
setting for each cut-o� parameter that gives a relative
error in the bonding energy smaller than 0.1%. At the
same time we have tried to achieve stability in the
computational process in the sense that not just the ®nal
bonding energy is stable to the required precision but
also the SCF cycling proceeds in the same way, so that
the same number of SCF cycles is needed to reach
convergence. The latter requirement resulted for some of
the cut-o�s in values that lead to a relative error in the
bonding energy much less than 0.1%.

The cut-o� used in the ®tting of the density is deter-
mined by the radius of a basis function as calculated
from the weight parameter w for neglecting the tail of the
basis functions given in Eq. (2.4). The radii are used to
decide which pairs of basis functions have negligible
overlap. The neglecting of basis function pairs vlvm in the
®tting of the density leads to loss of charge (the contri-
bution PlmSlm is neglected) and to a relative error in the
bonding energy. A good choice for the cut-o� criterion w
turned out to be 0.05%. This gives a radius of 5.8 AÊ for
the carbon atom. The loss of charge is almost negligible:
less than 10)7%. Although this is a small charge de®cit,
it turned out to be important to rescale the ®t coe�cients
so the exact charge is retained. This rescaling of the
number of electrons in the ®t density proved to be par-
ticularly bene®cial for stability in the (number of) SCF
cycles. The relative error in the bonding energy due to
this cut-o� in the density ®t is very small: less than
10)6%.

The calculation of the Coulomb and XC potential in
the grid points uses two cut-o� criteria. One is for the
cut-o� of the tails of the ®t functions, which is used for

both the density evaluation and the short-range Cou-
lomb potential. The weight function w of Eq. (2.4) is
used as a criterion to determine the function radius. The
other cut-o� is for the multipolar part of the Coulomb
potential, Eq. (4.5). The in¯uence of the two cut-o�
parameters on the relative error of the bonding energy
and the convergence of the SCF was investigated inde-
pendently. The cut-o� criterion of the ®t functions was
set at 0.005%, which implies a maximum radius of car-
bon of 7.4 AÊ . The relative error in the bond energy was
about 0.01% for Pt(P(Ph)3)3CO, but for the alkanes it
was much smaller: about 10)5%. The cut-o� for the
multipolar part was set to 10)5 a.u., i.e. a multipole term
MA

lm=�RkA�l�1 is evaluated in all the points of a block B if
MA

lm=��RkA�l�1 in the point rk of the block nearest to atom
A is larger than 10)5 a.u. In this case the error in the
energy was less than 10)5%.

For the building of the Fock matrix two cut-o� cri-
teria are used: (1) the threshold that determines if two
basis functions have a su�ciently large overlap and
therefore a Fock matrix element, analogous to the
(independent) threshold used to decide which basis
function pairs can be neglected in the density ®t; (2) the
tail-function indicating the weight of a basis function
over a block of points, which determines if the points of
a block have to be used for the numerical integration of
a Fock matrix element, Eq. (5.3). We will refer to the
former cut-o� as the overlap threshold. Again the two
cut-o� criteria are investigated separately. We investi-
gated the error for the building of the Fock matrix by
comparing the matrix of the unit operator, calculated
numerically with either one of the cut-o�s applied, to the
analytically calculated ``exact'' overlap matrix. The radii
of the basis functions for the overlap threshold were
determined with w [Eq. (2.4)] set to 0.05%. The maxi-
mum radius of the carbon atom in the building of the
Fock matrix then equals 7.4 AÊ . The maximum absolute
error in any overlap matrix element is less than 10)4 for
this cut-o�. To determine if a block B has to be used for
a hvljĥsjvmi matrix element of the Fock matrix, the
threshold of Eq. (5.3b) was set to 10)4, which also re-
sulted in a maximum absolute error of 10)4.

We have ®nally ascertained that with the above
mentioned setting of the cut-o� criteria the relative error
in the bond energy does not increase with the system
size. Figure 10 displays the relative error of the bond
energy with a precision of 10)6 (10)4%) in the numerical
integrations of the Fock matrix elements, as well as with
a numerical precision of 10)3. A numerical precision of
10)6 assures that we do not have errors due to numerical
integration and cut-o�s that accidentally cancel each
other. The results with numerical precision of 10)3 are
displayed because this precision was used for the tim-
ings. We see that the cut-o� criteria satisfy our re-
quirement of a relative error less than 0.1% and of a
stable relative error, independent of system size.

7 Summary

In Tables 1±3 we present some overall timings for the
old and new codes. As a genuinely three-dimensional
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system Pt(P(Ph)3)3CO is included, where three P(Ph)3
ligands are directly coordinated to the Pt atom, as is the
CO ligand. The number of atoms (105) is equal to that in

the chain-like alkane C35H72. The 602 atom alkane
C200H402 is more typical for the size of system for which
the present development is intended. The numbers of
STO basis functions are 685, 459 and 2604 for these
three systems, respectively.

In the old situation, the calculation of the kinetic
energy matrix, which is presented separately since it is
carried out once, prior to the SCF cycles, and the setting
up of the Fock matrix of the electronic potentials, are
the most time-consuming parts of the calculation for
Pt(P(Ph)3)3CO and in particular for C200H402. They are
also the steps for which (by far) the largest speed-up
factors are achieved. Although the total speed-up is al-
ready quite signi®cant for the 105-atom systems, the real
bene®t of the better scaling is, of course, most apparent
in the largest system. In all systems the relative weights
of computational burden shift from the matrix evalua-
tion to the calculation of the ®t integrals. This is notably
the case for the Pt complex, which is related to the large
number of basis functions on the Pt atom. It should be
realized, however, that the calculation of the ®t integrals
is only executed once, as is the calculation of the kinetic
energy matrix, whereas the other steps are repeated on
each cycle (in the so-called direct-SCF mode). Inciden-
tally we note that the diagonalization times are still fairly
modest and that the diagonalization is not yet a bottle-
neck, in spite of its N3 scaling.

We conclude that signi®cant advances have been
made towards an O(N) DFT method. The calculation of
the ®t integrals is still relatively time-consuming but has
been scaled down to linear scaling. The calculation of
the Coulomb and XC potentials is, in the alkane chains,
4±6 times less expensive, but since its scaling has not
been reduced to linear, it will eventually dominate and
should be the next target for algorithmic development.
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Fig. 10. The relative error in
the bond energy (total energy
minus sum of atomic energies)
for the alkanes. The cases with
a numerical integration preci-
sion of 10)3 and 10)6 are shown

Table 1. Timing results (times in seconds) for Pt(P(Ph)3)3CO

Old New Speed-up

Calculation of ®t integrals 2892.1 2582.7 1.1
Calculation of kinetic energy
matrix

4089.5 759.9 5.4

Calculation of VCoulomb and VXC 926.1 266.3 3.5
Calculation of v(rk) 162.3 90.5 1.8
Set-up of Fock matrix 2292.4 416.1 5.5
Determination of ®t coe�cients 144.7 95.5 1.5
Diagonalization 0.8

Table 2. Timing results (times in seconds) for C35H72

Old New Speed-up

Calculation of ®t integrals 420.5 179.6 2.3
Calculation of kinetic energy
matrix

343.2 28.7 12.0

Calculation of VCoulomb and VXC 138.8 31.3 4.4
Calculation of v(rk) 24.7 7.3 3.4
Set-up of Fock matrix 170.4 11.5 14.8
Determination of ®t coe�cients 9.4 3.6 2.6
Diagonalization 8.0

Table 3. Timing results (times in seconds) for C200H402

Old New Speed-up

Calculation of ®t integrals 10342.2 1280.8 8.1
Calculation of kinetic energy
matrix

62777.0 205.0 306.2

Calculation of VCoulomb and VXC 3602.8 352.9 10.2
Calculation of v(rk) 765.5 44.5 17.2
Set-up of Fock matrix 35277.0 74.8 471.6
Determination of ®t coe�cients 459.0 39.6 11.6
Diagonalization 53.5
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